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Abstract— Mobile wireless ad-hoc networks lack some basic
abilities taken for granted in wired networks, such as the ability
to know adjacent nodes. We present a neighbor discovery proto-
col, with particular application to broadcast flooding. The Neigh-
bor Exchange Protocol (NXP) has two main improvements over
simple periodic broadcast schemes: (1) it only sends Hello packets
when necessary to maintain topology and (2) uses sequence num-
bers in redistributed information to aid in convergence. In simula-
tion, we compare NXP to a periodic protocol and simple flooding
for all-node packet broadcasts and two dissemination techniques.
We show that we maintain similar delivery rates while using fewer
control packets in most configurations.

I. INTRODUCTION

Wireless ad-hoc networks are characterized by a radio chan-
nel and arbitrary topology without fixed infrastructure, such as
cell sites or base stations. All such networks need a method to
detect and organize nodes, whether it is to compute a schedule
for TDMA-style MAC layers, determine adjacencies for rout-
ing, or perform what is known as dominating-set routing [1],
which uses localized neighborhood information to create packet
distribution backbones.

Neighbor protocols are designed to exchange node informa-
tion for determining which nodes are “alive” and reachable.
They generally fall in to two groups: periodic or event-based.
Periodic protocols broadcast Hello packets with some, possibly
variable, frequency. The frequency may vary based on network
load, node mobility, or relative group mobility. Event-based
schemes send Hello packets based on events such as distance
moved or detected topology changes.

Many protocols use neighbor information to control broad-
cast distribution over ad-hoc networks. Some use periodic
Hello messages [1], [2], [3], [4], [5] and others use event-based
updates [6], [7], [8]. Periodic schemes usually exchange limited
information – such as only node ids – over a limited distance.
Hello packets in location-based schemes broadcast the send-
ing node’s location, such as determined by GPS. The location-
based protocols generally serve as full routing protocols, and
are not limited to two-hop neighbor information. The location
packets may flood the network.

This work was supported in part by the Office of Naval Research (ONR)
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The present work does not address the differences be-
tween periodic topology protocols and location-based proto-
cols. Location-based protocols have a significantly different
approach to connectivity and routing. NXP is suited towards
distance-vector routing protocols and connectivity-based dom-
inating set broadcast distribution.

Broadcast distribution control generally follows a type of
dominating-set routing or re-broadcasting based on geometry.
Neighbor information controls how nodes propagate packets –
either repeating a packet or suppressing a packet. The protocols
assume full duplex links. If node A can hear node B’s Hello
packet, then node B may hear A. In fact, this is sometimes not
the case in common-channel wireless networks, where asym-
metric fading and location-dependent noise levels may favor
hearing one node or another.

A problem arises when a node makes forwarding decisions
based on incorrect information. If in the above example, A ac-
tually cannot hear B, but B hears and advertises A as a one-
hop neighbor, some third node C may choose B to forward to
A when in fact there may be a better forwarder. Section II
describes the Neighbor Exchange Protocol (NXP), which ad-
dresses this weakness by including per-node sequence numbers
in topology broadcasts and using a three-state machine – Up,
Hold, and Down – where nodes in the Hold state have not been
full-duplex verified.

NXP converges to correct topology information and main-
tains liveliness in a mobile environment without requiring Hello
packets be sent on a fixed schedule. It also allows using small
KeepAlive packets rather than full topology Hello datagrams.
The key feature of NXP is to advertise neighbors’ ids, state (up
or hold), and sequence number. By repeating the most recently
heard sequence numbers for each one-hop neighbor, NXP can
detect inconsistencies and pro-actively try to correct them. In-
cluding a node state allows advertising unverified nodes (nodes
in simplex state) and also serves to indicate to one-hop neigh-
bors if they are going to be aged-out because of lost neighbor
packets.

Topology Broadcast Reverse Path Forwarding (TBRPF) [9]
uses the TBRPF Neighbor Discovery (TND) mechanism. TND
has several similarities to NXP. As of draft 3 (current draft
is 5), TND is modular and independent of TBRPF, similar
to how we have used an external NXP process. TND uses
differential Hello messages whereas NXP uses either com-
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plete one-hop neighbor information Hellos or Keepalives which
only carry a sequence number. TND sends a Hello every
HELLO INTERVAL, whereas NXP will not send a Hello if the
MAC layer has otherwise sent a packet and there has not been
some other event that mandates a Hello packet. NXP relies on
promiscuous mode operation.

TND maintains symmetric links by repeating recently heard
Hellos in the NEIGHBOR REQUEST field. A receiver scans
this list to see if it is listed and if not, it sends Hellos until a 2-
way link is established, which is similar to NXP’s “force hello”
mechanism, but NXP also considers sequence number differ-
ences. NXP extends this idea to all common one-hop neighbors
and uses Poll packets to converge topology information.

TND makes uses of sequence number differences to detect
the number of lost Hellos and if it is greater than a threshold a
pair of nodes may agree to ignore each other by declaring the
link “lost”. NXP does not have any such mechanism, but it does
detect intermittent links by redistributing all sequence numbers
of neighboring nodes and comparing the resulting topologies,
and may try to converge the topology with Poll packets.

Section III presents the results of simulation experiments us-
ing three broadcast distribution protocols over two neighbor
protocols and flooding. The broadcast distribution protocols
are AHBP and AHBP-EX [5], and Dominant Pruning (DP) [3].
The analysis considered three graph densities, four traffic rates,
two mobility rates, and five Hello periods. Except for one com-
bination, NXP performed better than a periodic protocol for
dominating-set broadcast distribution. NXP either had a higher
delivery ratio and a higher efficiency, or a higher delivery ratio.
Flooding had the highest overall delivery ratio in all simula-
tions, but generally was very inefficient in terms of the ratio
of packets transmitted to packets received. The exception is
AHBP-EX using a periodic protocol with a long Hello period.
It appears that the out-dated neighbor information gives AHBP-
EX a boost: stale neighbor information allows AHBP-EX to
flood more often and results in higher delivery rates.

II. PROTOCOL

We first present a general description of NXP then provide
pseudo-code of the principle routines. This section focuses on
the use of sequence numbers to aid in direct and indirect topol-
ogy convergence and the state changes between Up, Hold, and
Down for neighboring nodes.

The protocol works by combining pro-active Hello packets
that contain one-hop topology information with MAC layer
snooping. Nodes only send Hello packets if the MAC layer has
not transmitted any other packet within a timeout period. In an
802.11-style MAC layer, all packets including control packets
contain the source address and may serve as keep-alive indica-
tors to neighboring nodes.

Our current implementation uses a fixed beaconing interval
in which at least one packet (user data, NXP Hello, NXP Poll,
or NXP Keepalive) must be sent. It would be possible to use

variable frequency periods or event-based triggers, such as mo-
bility rate or distance moved, in other instances of NXP. The
present work focuses on the redistribution of sequence numbers
and indirect detection of topology changes using those num-
bers.

NXP uses three types of packets and four timers. The packets
are Hello, KeepAlive, and Poll. The timers are SendMessage,
Purge, Recompute, and Poll. We refer to the length of the mean
SendMessage timer as Period. A node sets timers with a jitter
variation chosen uniformly over an interval. NXP also responds
to the event Message: the reception of a packet from the MAC
layer. Receiving a packet may promote neighbor status from
Unknown to Up, Down to Hold, or Hold to Up. Periodic Purge
timers may demote status from Up to Hold or Hold to Down.

NXP maintains two tables. The NbrTable stores a row for
each one-hop neighbor, described below. NXP passes this in-
formation to a topology algorithm on topology changes, rate
limited by the Recompute timer. The NbrPoll table lists nodes
in an inconsistent sequence-number state. A node will periodi-
cally send a Poll packet to these nodes, gated by the Poll timer.

Each node has a HelloSeqno, which is monotonically in-
creasing for each Hello sent. A KeepAlive packet includes the
current HelloSeqno, but does not increment the value. Poll mes-
sages do not include a sequence number. We do not currently
consider issues of sequence number wrap-around and node fail-
ures resulting in reusing sequence numbers.

A neighbor node may be in one of three states: Up, Hold,
Down. Hello packets advertise both Up and Hold nodes, in-
dicating the state. A receiver only uses Up nodes in topology
computations. A node in the Down state is considered discon-
nected and all topology information from it is discarded. A
node in the Hold state is in a hysteresis between Up and Down.

A. Data Structures

The NbrPoll table is a simple list of node addresses. All
nodes listed are candidates for a Poll message when the Poll
timer expires. The NbrTable stores records consisting of {id,
lastHeard, lastHelloSeqno, state, heardCount, nbr}. last-
Heard tracks the arrival time of the last packet from a given
one-hop neighbor. lastHelloSeqno tracks the last valid
HelloSeqno from the node. state = {Up,Hold,Down} and
heardCount tracks the number of packets heard since the last
Purge.

A Hello packet sent to the MAC layer has the fields {type,
seqno, size, nodeList, stateList, seqnoList}. The field type
is {Hello,KeepAlive,Poll}, indicating the type of packet. The
field seqNo is the sending node’s current HelloSeqno. When
sending a Hello packet, the source increments HelloSeqno
before sending the packet. For KeepAlive packets, a source
uses its current HelloSeqno. Poll packets do not use seqno.
The first Hello sent by a node has seqNo=1. size is the num-
ber of entries in the lists nodeList, stateList, se-
qnoList. nodeList lists all one-hop neighbors in the Up or
Hold state. For each address A ∈ nodeList, seqnoList[A]



contains the corresponding HelloSeqno known at S for A. This
entry may be 0, which indicates the sender has not received a
Hello from A, but only snooped a packet. stateList[A]
likewise is the state for A.

A KeepAlive packet has only the type and seqNo fields.
It does not repeat topology information. A Poll packet is the
same as a Hello packet, but the type indicates it is a Poll and
it does not use seqnoList or stateList. The nodes listed
in nodeList are requested to respond with a Hello packet at
the expiration of their next SendMessage timer.

B. Node Initialization

At initialization, a node creates empty NbrTable and NbrPoll
tables. It sets the three timers SendMessage, Purge, and Poll.
The Recompute timer is only set by protocol events. There
are three global variables, set as: forceHello = true, re-
computePending = false, helloSeqno = 0. NXP also
keeps track of the number of packets transmitted by the MAC.
We initialize macUnicast, macBroadcast, macMulti-
cast, and macControl to zero.

NXP uses the constants HoldDown and AgeOut to determine
state changes. HoldDown controls when an Up neighbor be-
comes a Hold neighbor. We use 1 * (Period + max jitter). Age-
Out controls when a Hold neighbor becomes a Down neighbor.
We use 3 * (Period + max jitter). Using a longer HoldDown
results in significantly less overhead and somewhat lower de-
livery rates. The constant HoldCnt determines the number of
consecutive packets needed to transition a node from Hold to
Up. We use HoldCnt=2.

C. Algorithms

NXP’s three principle routines are ProcessMessage(),
Timer(), and ProcessHello(). The environment calls
ProcessMessage() on the arrival of any packet for NXP.
These include packets addressed to the NXP SAPI and to
packets snooped by the MAC layer. The environment calls
Timer() at the expiration of any of the four times. Pro-
cesssHello() is called by ProcessMessage() for
Hello PDUs.

The salient features of Timer() is that a SendMessage
timer will only send a packet if forceHello is true or if
the MAC layer statistics show that the MAC layer has not sent
any packets since the last check. NXP compensates for NXP-
originated packets and does not count those. A Purge timer will
only force a topology recompute when a node transitions from
Hold to Down. Up to Hold transitions do not cause a recom-
pute.
ProcessMessage() and ProcessHello() contain

the code to pro-actively use Poll and Hello messages in re-
sponse to topology changes detected through sequence num-
bers. In lines 8 – 10 of ProcessMessage(), the receiving
node checks that the sequence number of a KeepAlive packet
is the same as the stored node.lastHeardSeqno. If it is

newer, then node will queue a Poll for msg.source. In lines
14 – 17, a receiving node will queue a Poll packet if it receives
a packet from an unknown node and the packet is not a Hello.
ProcessHello() performs indirect detection of topol-

ogy changes in lines 14 – 16. For each node j ∈ msg.data
listed in a received Hello packet, the receiver checks to see
if j is a known one-hop neighbor. If so, the receiver com-
pares the stored lastHeardSeqno against the redistributed
msg.seqnoList. If the received Hello has a more current
sequence number, the receiver has out-of-date information and
will queue a Poll request for node j.

PROCESSMESSAGE(node, msg)
(1) isnew←false
(2) row← node.NbrTable[msg.source]
(3) if row is NIL
(4) Create new row in Up state
(5) isnew←true
(6) if msg is Hello
(7) PROCESSHELLO(node,msg, row)
(8) else if msg is Keepalive
(9) if msg.seqno > row.lastHeardSeqno
(10) Add msg.source to node.NbrPoll
(11) else if msg is Poll
(12) if node.id ∈ msg.data
(13) node.forceHello←true
(14) else
(15) Promiscuous snooped packet
(16) if isnew = true
(17) Add msg.source to node.NbrPoll
(18) if isnew = true
(19) FORCERECOMPUTE(node)
(20) else
(21) if row.state = Up
(22) row.lastHeard←now
(23) else if row.state = Hold
(24) if now − row.lastHeard ≤ period + jitter
(25) row.heardCount + +
(26) else
(27) row.heardCount←1
(28) if row.heardCount ≥ holdcnt
(29) row.state←Up
(30) row.lastHeard←now
(31) else
(32) Packet from down node
(33) row.heardCount←1
(34) row.lastHeard←now
(35) row.state←Hold

III. SIMULATION

We conducted several types of simulations using Glo-
MoSim [10] with an 802.11 MAC layer with a 250m trans-
mission range. The simulations measured the delivery ratio of
packets received to packets sent and the number of neighbor
over-head packets. We simulated a wide variety of conditions,
which show that NXP has the same delivery ratio as a periodic
protocol, but with lower overhead.

In each scenario, there are four source nodes, which send 500
byte UDP packets from a Poisson source with mean rate of 2,



TIMER(node, timer)
(1) if timer is Recompute
(2) Send all up node information in node.NbrTable to

topology algorithm.
(3) else if timer is SendMessage
(4) if (node.forceHello = true ) or (MAC layer quiet)
(5) hello.type = hello
(6) node.seqno + +
(7) hello.seqno = node.seqno
(8) For each {id, state, seqno} ∈ node.NbrTable

where state is Up or Hold, add to hello.data.
(9) Transmit hello.
(10) Set SendMessage timer
(11) else if timer is Poll
(12) PollList←NIL
(13) foreach row ∈ node.NbrPoll
(14) if row.state �= Down
(15) Add row.id to PollList
(16) if PollList not NIL
(17) Create Hello packet with hello.data ←

{PollList, 0, 0} and hello.seqno ← 0.
Transmit.

(18) Set Poll timer
(19) else if timer is Purge
(20) foreach row ∈ node.NbrTable
(21) if row.state = Up
(22) if now − row.lastHeard ≥ HoldDown
(23) row.state←Hold
(24) row.heardCount←0
(25) else if row.state = Hold
(26) if now − row.lastHeard ≥ Ageout
(27) row.state←Down
(28) row.heardCount←0
(29) row.nbrs←NIL
(30) FORCERECOMPUTE(node)

10, 20, and 40 packets per second per node, depending on the
simulation scenario. Nodes 1 and 2 were on from [0s - 60s] and
[120s- 180s]. Nodes 3 and 4 were on from [30s - 90s] and [150s
- 210s]. Repeater nodes add a random exponential delay when
repeating packets, with mean delay of 5 milliseconds.

There are five general scenarios: base case (BC), high den-
sity (HD), high mobility (HM), group mobility (GM), and low
density (LD), all being variations on parameters listed in Ta-
ble I. The BC scenario uses 50 nodes with velocities 1 – 10
m/s placed at random in the simulation space. The HD scenario
uses 100 nodes. The HM scenario uses 50 nodes with velocities
5 – 20 m/s. The GM scenario is BC with a circularly symmetric
node distribution of four rings with radii of 50m, 150m, 400m,
and 750m. There were 5, 10, 16, and 19 nodes in each ring,
respectively. The GM scenarios model high noise/low noise
environments by grouping nodes. The LD scenario is BC, but
with 25 nodes.

Each scenario is run with 123 configurations, based on vari-
ations of Table I. The Hello period is the setting for the
SendMessage timer. The Purge timer is set to the same mean
as the SendMessage timer. The Poll timer mean is 1.5 times
longer than the SendMessage timer. The Recompute timer is
1/20th the SendMessage timer. The jitter in timer all timers

PROCESSHELLO(node, msg, row)
(1) if msg.seqno > row.lastHeardSeqno
(2) oldnbrs← row.nbrs
(3) row.nbrs←NIL
(4) foundme←false
(5) row.lastHeardSeqno← msg.seqno
(6) foreach {n, state, seq} ∈ msg.data
(7) if state = Up
(8) Add n to row.nbrs list
(9) if n = node.id
(10) foundme←true
(11) if (seq < node.seqno) or (state = Hold)
(12) node.forceHello←true
(13) else
(14) row2← node.NbrTable[n]
(15) if (row2 not NIL) and (seqno >

row2.lastHeardSeqno)
(16) Add node n to node.NbrPoll
(17) if foundme = false
(18) node.forcehello←true
(19) if row.nbrs �= oldnbrs
(20) FORCERECOMPUTE(node)

Description Values
Hello period (sec) 0.5, 1, 2, 4, 8
Distribution Flood, DP, AHBP, AHBP-EX
Neighbor Proto None, Periodic, NXP
Source rate (pps) 2, 10, 20, 40
Mobility 1-10 m/s or 5-20 m/s
Pattern random waypoint, 0 sec pause
Sim time 300 sec

TABLE I
SIMULATION VARIABLES

except Recompute is ±1/5th the SendMessage length. The
Recompute timer is deterministic. The Distribution methods
are Distributed Pruning (DP) [3], Ad-hoc Broadcast Protocol
(AHBP) [5], and blind flooding with packet cache (Flood). In
the simulation runs, we denote AHBP as AH and AHBP-EX as
AX. The Neighbor Protocols are Periodic (PR) and NXP (NX).
Note that flooding does not use a neighbor protocol and does
not depend on Hello periods.

We have summarized the behavior of broadcast flooding in
to two metrics with the independent variable being the Hello
period. The Delivery Ratio is the total number of unique pack-
ets received by all nodes divided by the total number of packets
originated by all nodes. The Inefficiency is the total number
of packets transmitted by all nodes divided by the total number
of unique packets received by all nodes normalized by (divided
by) the total number of packets originated by all sources. In
computing the averages, we consider a source node originating
packets to receive all those packets

Based on our simulation parameters, flooding always had the
best delivery ratio. Fig. 1 plots the Delivery Ratio for the five
Hello periods. As the Hello period increases, the delivery ratio
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of the dominating-set distribution protocols decreases. Flood-
ing is invariant to Hello period as it does not use a neighbor
protocol. At long Hello periods (8 seconds), AHBP-EX with
a Periodic protocol has a higher delivery ratio. Stale one-hop
information allows AHBP-EX to flood more packets resulting
in a higher delivery ratio.

In terms of efficiency (inefficiency in our plots), Fig. 2 shows
that for very short Hello periods, dominating-set distribution
with neighbor protocols is less efficient than flooding and from
Fig. 1 has a lower delivery rate. For Hello periods of 1 second
or longer, the adaptive protocols become more efficient than
Flooding. A 1 second Hello period has almost the same delivery
ratio as flooding at a higher efficiency.

The absolute values of results vary considerably depending
on the scenarios (BC, GM, HD, HM, LD), but the general trends
are similar. The notable exception is that in the HD and GM
configurations, dominating-set distribution have higher delivery
ratios than flooding for Hello periods of 2 seconds and under for
high packet rates (more than 10 pps).

IV. CONCLUSION

We have presented the Neighbor Exchange Protocol (NXP),
which uses variable frequency Hello packets to maintain two-
hop topology information in an ad-hoc network. NXP also uses
small KeepAlive packets rather than rebroadcast full topology
Hello packets if there has been no change to topology within a
timeout period. By redistributing sequence numbers and node
states in Hello packets, NXP may detect topology inconsisten-
cies.

NXP uses and redistributes sequence numbers and has a three
state (up, hold, down) neighbor model. This allows direct de-
tection of inconsistencies. A Poll mechanism allows nodes to
request full-topology Hello packets when needed.

Simulation experiments showed that NXP yields delivery ra-
tios that are in most cases as good or better than those attained
by a periodic protocol. Where the delivery ratio is lower, NXP
also has a higher efficiency. An optimization to the protocol
would be to piggyback Poll packets on Hello/Keepalive pack-
ets, which would further reduce the protocol overhead.
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